数学公式集

数学公式集

区分求積法(Quadratures By Parts)

区分求積法と定積分関数 $f(x)$ は区間 $$ で連続であるとし、$f(x)$ と直線 $x=a,\ x=b$ および $x$ 軸によって囲まれる面積を $S$ とします。 図のように区間 $$ を $n+1$ 個の点 \ で分割して、...
数学公式集

ペアノの公理

数学は 自然数 (natural number) \ を定義することから始まります。自然数の集合を $\mathbb{N}$ と表記し、ある数 $a$ が自然数に属することを $a\in\mathbb{N}$ と表します。 ペアノの公理(P...
数学公式集

必要条件と十分条件、必要十分条件(同値)

必要条件と十分条件$p\Longrightarrow q$ が真であるとき、    $p$ は $q$ であるための 十分条件 (sufficient condition)  $q$ は $p$ であるための 必要条件 (necessary...
数学公式集

ド・モルガンの法則

条件 $p,\:q$ について 「$p$ かつ $q$」を論理積(logical conjunction)とよび、「$p\land q$」と表します。「かつ」は英語の and です。「ともに」と言い換えるとわかりやすいかもしれません。たとえ...
数学公式集

命題の真偽・否定・逆・裏・対偶

$p$ という仮定(assumption)に対して $q$ という結論(conclusion)が真 (true) であるのか偽 (false) であるのかの2択で定まるような文章や数式のことを命題(proposition) とよび、「$p\...
数学公式集

数学的帰納法の原理と応用

数学的帰納法次のような漸化式の一般項 $a_n$ を求めてみます。 \&a_{n+1}=2\,a_n+1\quad(n=1,2,\:\cdots)\end{cases}\] 漸化式の解き方を知っている人にとっては簡単な問題ですが、今はそれを...
数学公式集

補充法則と相互法則

定理 F11 を再掲します。 $p$ を奇素数、$(a,\:p)=(b,\:p)=1$ とするとき、 \ 一般の正負の整数 $n$ は、$q_1,\:q_2,\:,\cdots$ を奇素数、$s,\:t_1,\:t_2,\:\cdots$ ...
数学公式集

ガウスの補題

ガウスの補題たとえば、$p=11,\;a=5$ として、 $a$ の $1$ から $(p-1)/2=5$ 倍までの倍数をつくると、 \ これらを $p=11$ で割った余りを並べると \ さらに $11/2=5.5$ よりも大きな数につい...